PN

A \

a
s
\

#
JA \
A

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

A

ya \

A
A

/A \

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

TRANSACTIONS

PHILOSOPHICAL THE ROYAL
OF SOCIETY

Fluid Loading with Mean Flow. |. Response of an
Elastic Plate to Localized Excitation

D. G. Crighton and J. E. Oswell

Phil. Trans. R. Soc. Lond. A 1991 335, 557-592
doi: 10.1098/rsta.1991.0060

i i i Receive free email alerts when new articles cite this article - sign up in
Email alerti ng service the box at the top right-hand corner of the article or click here

To subscribe to Phil. Trans. R. Soc. Lond. A go to:
http://rsta.royalsocietypublishing.org/subscriptions

This journal is © 1991 The Royal Society


http://rsta.royalsocietypublishing.org/cgi/alerts/ctalert?alertType=citedby&addAlert=cited_by&saveAlert=no&cited_by_criteria_resid=roypta;335/1639/557&return_type=article&return_url=http://rsta.royalsocietypublishing.org/content/335/1639/557.full.pdf
http://rsta.royalsocietypublishing.org/subscriptions
http://rsta.royalsocietypublishing.org/

Downloaded from rsta.royalsocietypublishing.org

Fluid loading with mean flow. I. Response of an
elastic plate to localized excitation

By D. G. CRicHTON AND J. E. OSWELL

Department of Applied Mathematics and Theoretical Physics, University of
Cambridge, Silver Street, Cambridge CB3 9EW, UK.
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The response to localized forcing of a fluid-loaded elastic plate is studied in the case
when there is uniform incompressible flow over the plate. Absolute instability of
the fluid—plate system is found when the dimensionless mean velocity U exceeds a
threshold U, which is found exactly. For U < U, the system is convectively unstable
for 0 < w < wy(U), neutrally stable, with anomalous features, for w,(U) < o < w,(U),
and stable, with conventional features, for w > w,(U), w being the excitation
frequency : here asymptotic expressions are found for the frequencies wy(U),w,(U),
and for the wavenumbers and amplitudes of the waves found upstream and
downstream of the excitation. A significant feature is that Re 4, < 0 throughout
0 <w < w,, 4, being the drive admittance (velocity at the point of application of the
force); this means that throughout the convectively unstable and the anomalous
neutral frequency ranges, the exciting force must absorb energy. An exact energy
equation is derived, and shown to require the introduction of a new fluid—plate
interaction flux Uy¢,, where ¢ is the fluid potential and 5 the plate deflexion. The
energy equation is used to illuminate properties of the convectively unstable and
neutral waves, to verify the property Re4, < 0 and to trace the waves responsible
for this. Anomalous features in the frequency range wy(U) <w <w,(U) are
investigated further from the viewpoint of the theory of negative energy waves, and
it is found that not only can some wave modes in this frequency range have negative
energy, but also group velocity in an inward direction (towards the excitation). It is
argued that this does not contradict the outward group velocity ‘radiation condition’
of M. J. Lighthill, because that condition refers expressly to circumstances in which
the excitation is the sole source of all the wave energy, whereas here the excitation
acts also as a scatterer, transferring energy from the mean flow to the wave field.
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1. Introduction

This paper offers a contribution to the theory of wave propagation and instability in
the flow of inviscid incompressible fluid over a flexible surface (in this case a thin
elastic plate). Similar topics have been treated many times already in the literature,
essential advances having been made by Benjamin (1960, 1963) and Landahl (1962),
and with many later refinements in the modelling of the surface (with applications
to stability of compliant coatings deposited on metal basic structures) and in the
representation of the mean fluid velocity ; see the reviews by Riley et al. (1988) and
Gad-el-Hak (1986), and the papers by Carpenter & Garrad (1986) and Yeo & Dowling
(1987). Some features of waves identified by Landahl (1962) and Benjamin (1963)
have since been found to have wide applicability in wave mechanics, and the relevant
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558 D. G. Crighton and J. K. Oswell

theory of positive and negative energy waves (PEW and NEW) has been extensively
developed in plasma physics, while applications in hydrodynamic stability problems
are given by Cairns (1979), Kop’ev & Leont’ev (1985) and Ostrovski et al. (1986).

Now most studies of waves and instabilities in fluid flow over compliant surfaces
have concentrated on the propagation (downstream) of waves of specified real
wavenumber, with calculation of the temporal growth rate and phase speed of such
waves from the viewpoint of a classical initial value problem in which the surface
deflexion #(x, t) and velocity #,(x, t) are prescribed, for —o0 < & < + 00, att = 0. Our
approach to the problem follows the rather different models in mind in the theory of
structural acoustics. There the typical situation in mind is almost invariably one in
which some source of continuous excitation is present, localized in space but simple
harmonic in time. Examples include mounting points on a ship or aircraft structure
that transmit local forces and moments, with time-periodic variation, arising from
small out-of-balance effects in machinery (motors, pumps, gearboxes) attached to
the structure at the mounting points. There is an extensive literature on the response
of locally excited fluid-loaded structures in the absence of mean flow (see, for
example, Cremer et al. 1973; Junger & Feit 1986; Fahy 1985; Crighton 1989). In
these problems all wavenumbers are injected by the excitation, and one wants to
understand how particular wavenumbers are filtered out as the waves develop in
space at a fixed frequency. This is in general a far more difficult problem than the
pure initial-value problem without continuous forcing, for it is in general possible to
obtain several solutions to the single-frequency forcing problem (time dependence
exp (—iwt)) and it is necessary to invoke the principle of causality to determine the
unique causal one (the one — if it exists — that would arise as the long-time limit of
single-frequency forcing started at some time in the distant past). Compliance with
causality requires analytic variation of the solution as a function of @ throughout
Imw >0, so that attention cannot be restricted to the single real frequency
ultimately of interest and the problem becomes a global one in frequency.

Such considerations, long used in plasma instability problems, have only recently
been introduced into hydrodynamic stability theory. In the book of Drazin & Reid
(1981), for example, there is only a brief description of ‘spatial instability’ (pp.
349-353) and there is no suggestion that inversion of the dispersion relation to obtain
the complex wavenumbers of waves at a prescribed single frequency needs
considerations of a global kind in frequency. Moreover, the cross-stream structure of
hydrodynamic instability modes is an essential feature, whereas much progress can
be achieved in plasma problems with only plane-wave modes; and since the
transverse hydrodynamic mode shapes and the dispersion relation D(k, w) = 0 can in
almost all cases only be obtained numerically, it is hardly surprising that progress on
the single-frequency response to localized forcing has been slow (except in the case
of the static fluid generally studied in structural acoustics).

Recently, however, it has been increasingly recognized that many hydrodynamic
stability problems should be treated as ‘receptivity * problems (i.e. unstable response
to localized forcing), and the causality prescription has been carried through for
certain open (shear) flows; see Huerre & Monkewitz (1985) for the mixing layer
problem and the same authors (1990) for a wide-ranging review. Many of the aspects
of those problems, which can only be investigated numerically, and thus
incompletely, can be studied in more detail in the ‘basic problem of structural
acoustics’ (the response of a fluid-loaded structure to concentrated force excitation)
with inclusion of uniform mean flow. This problem was studied by Brazier-Smith &

Phil. Trans. R. Soc. Lond. A (1991)
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Fluid loading with mean flow. 1 559

Scott (1984), largely through a numerical examination of the (quintic) dispersion
relation, which can be obtained analytically. Brazier-Smith & Scott showed that at
normalized flow speeds U exceeding a critical U, = 0.074 the system was absolutely
unstable, with response to any forcing initiated at some definite time diverging
exponentially in time everywhere. For U < U, the system was shown to be
convectively unstable for single-frequency forcing in the range 0 < w < wy(U);
neutrally stable, though with some anomalous features, for wy(U) < w < w,(U); and
stable, and behaving essentially as in the absence of mean flow, for v > w (U). The
frequencies w, and w, were determined numerically for one value of U < U,.

Here we develop the study of Brazier-Smith & Scott, using exact, asymptotic and
numerical methods. Asymptotic results are derived for the unstable and neutrally
travelling waves and for the frequencies wy(U) and w,(U). The absolute instability
threshold velocity U, is found exactly. An expression for the drive point admittance
A, is found for the convectively unstable case, and it reveals that Red, <0,
indicating a flow of energy into the driver. A study is then made of the energy flow,
starting with the derivation of an exact ‘energy equation’. This demands the
introduction of a new flux Up¢,, evaluated at the plate surface, with % the deflexion,
¢ the fluctuation potential. It is shown how this energy equation is exactly satisfied
by the fluxes in the wave fields at large distances and by the exact expression for
Red,, and it is found that the property Red4, < 0 extends over the whole range
0 < < wy(U). This includes the range of anomalous neutrally stable propagation
ws < w < w, in which one would naturally assume a power input from the driver. In
fact Red4,—>—o00 as w approaches w, from below, and has a finite positive value
as w approaches w, from above, features predicted analytically and numerically.

In the anomalous range w; < < w,, waves appear with energy flux directed
towards the drive point. Although these waves may be small in amplitude compared
with the convectively unstable waves (at frequencies w < w;) that would inevitably
have been generated in any start-up process, the energy flux in them is not, and
therefore a closer look at these waves is undertaken in §5. (Here we should point out
that it is shown in §4 that there is zero total flux associated with a convectively
amplifying instability wave in isolation, and that any flux in the range w < w, derives
from the interaction between the amplifying wave and its decaying counterpart.)
Section 5 involves a discussion of the neutral waves in this system (at v < w, and
ws < » < w,) from the theory of PEW and NEW, and shows how this theory enables
propagation in the anomalous range to be understood rather better. One feature of
this frequency range that is discussed in particular relates to the criterion used to
avoid real-axis pole singularities in the Fourier wavenumber integral at a fixed
frequency. A widely used device for this purpose was introduced by Lighthill (1960,
1978), and involves the replacement of w by w + ie, € small and positive, corresponding
to an excitation ‘growing up’ to its present value from a very low level in the
distant past. Then a pole at k = k(w) for real « is displaced for small e to k = k(w)+
ie/cy(w) with c,(w) the group velocity, and thus the corresponding wave mode
exp (ik(w) x —iwt) is picked up only in the half-space (x > 0 or < 0) in which that
mode has group velocity directed away from the excitation (localized around x = 0).
This amounts, then, to a ‘radiation condition’ based on group velocity, and must
give the correct causal solution provided all the energy in the wave system is
delivered by the driver and provided there is no reservoir of mean energy in the
system which could be tapped, and the energy converted to a wave mode, by an
inhomogeneity such as a localized force.

Phil. Trans. R. Soc. Lond. A (1991)
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560 D. G. Crighton and J. E. Oswell

In the present problem there is such a reservoir of energy in the mean flow, and an
excitation agency that maintains a constant force F, exp (—iwt) must be prepared to
dissipate or supply energy according to the phase relation between F; and the drive
point velocity »(0) which comes about in the steady-state causal solution. There is,
therefore, no reason to expect the conditions for applicability of the Lighthill
procedure to be met, nor is this conclusion altered by a change of reference frame to
one in which the fluid at infinity is at rest, for there is then the need for dissipation
or supply of energy by the agency needed to maintain the constant translation of the
plate and the normal force.

Analytically this is reflected in the fact that for certain neutral wave modes
exp (ik(w) x —iwt) the local behaviour, for w—w+ie with ¢ small, and the global
behaviour, in which € can take arbitrary positive values, are found to differ. Local
displacement of k(w) into the half-plane Im k£ < 0 may be followed, as ¢ increases,
by a return to the real axis and further displacement, eventually to infinity, in
Im#k > 0. In that case the mode (with ¢, < 0) would be picked up in x <0 with
outgoing group velocity if the local condition were used, but is instead picked up in
x > 0, where it has incoming group velocity, if the global causality condition is used.
Moreover, the mode in question may have positive or negative energy density,
depending on a subdivision of the anomalous frequency range [wg, w,], and thus its
energy flux may be either towards or away from the excitation (here we note that the
relation (energy flux) = (group velocity) x (energy density) is found to hold for
neutral waves in all cases, whatever the signs of the group velocity and energy
density, thereby extending the range of applicability of Lighthill’'s (1960, 1978)
extension of Kelvin’s result). It can be argued (as was mentioned a little earlier) that
all these unusual features of neutral waves for w, < w < w, are in fact irrelevant,
because these fields are all exponentially dominated, for large x, by convectively
unstable waves generated in the frequency range 0 < w < w, by any physically
possible start-up mechanism. That argument does not, however, apply in x <0,
where there are also unusual features of neutral waves, nor does it apply to the
energy fluxes in the waves in > 0 (the convectively amplifying waves having a flux
independent of x and not necessarily dominating that of the neutral waves, as
explained in §4).

We therefore think that the anomalous neutral waves may be physically
significant, and argue that their appearance has to be accepted from implementation
of causality arguments. The physical reason is clear; Lighthill’s local group velocity
condition is an analytical expression of the fact that, for the classes of system he had
in mind, all the wave energy in the system is radiated away from the excitation. In
our system this is not so, and all that one can say is that the forcing inhomogeneity
is an energy-conversion mechanism, capable of scattering mean flow energy into
wave energy without any modification to the (infinite) mean flow itself. Such
conversion is not restricted to the unstable frequency range, and its ability to require
the excitation to absorb energy extends beyond that range to the anomalous neutral
range. Only for > w,(U) are all the mechanisms involved described, for small U, by
regular perturbations of the familiar problem of the fluid-loaded elastic plate without
flow.

Phil. Trans. R. Soc. Lond. A (1991)
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2. The dispersion relation
2.1. Definition of the problem

An infinite elastic plate of specific mass m and bending stiffness B lies in the plane
y = 0. The half-space y > 0 is occupied by a fluid of density p, and sound speed ¢,
moving with uniform velocity U in the positive x-direction, and there is a vacuum in
y < 0. The plate is driven by a line forcing of magnitude F(¢) per unit length of the
z-axis, acting in the positive y-direction and generating two-dimensional fluid motion
in the (x,y) plane. We shall ultimately be interested in the time-harmonic case
F(t) = Fye !, or more strictly, in the long-time limit of the problem with F(t) =
Fye i*'H(t) (H the Heaviside function), but there is a need to begin with the general
time dependence. The system is at rest for ¢ < 0, and F(t) = 0 for ¢ < 0.

The equations governing the system are the thin plate equation for the surface
response, and velocity—displacement equation for surface velocity,

s
[mat2+Ba 4]77(96, t) = F(t)d(x)—p(,0,1), (2.1)
o
o = (@,8) = v(x, 1), (2.2)

the kinematic boundary condition

%%, 3 .
ay €,0,t) = [at+U x] (x, 1), (2.3)

the linearized Bernoulli equation relating fluid pressure and velocity potential
perturbations,

0 0

and the wave equation

a a ? 2 —
[(aﬁ U ) -2V ]¢(x,y,t) =0, (2.5)

or, for incompressible flow, Laplace’s equation
Vig(x,y,t) = 0. (2.6)
The energy equation, in conservation form, for incompressible flow perturbations, is
0E/0t+V-F =0, ’ (2.7)
where the energy density £ and flux F are given by
= 3po(V9)?, F= (p+p,Udp/0x)(0¢/0x,0¢/y).
This follows immediately from the linearized Euler equation in the form

Ve /0t +py'V(p+p, Udg/0x) =
Phil. Trans. R. Soc. Lond. A (1991)
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562 D. G. Crighton and J. E. Oswell
Introducing the scalings
U = (mi/p, BYU, & = (po/m), ¢ = (pjBYmi)t, y = (py/m)y
¢ = (mi/B)p, o = (py/m)y, v = (mi/p,B)o, P = /piB)p
F'(t) = (m*/pg B)F (1), 8(') = (m/py)8(2), c; = (mi/py B c,

we drop the ” and refer to equations (2.1)—(2.7) in their dlmensmnless forms. These
are formally identical to (2.1)~(2.7) with m, B, p, replaced by unity ; two independent
parameters, U and c,, remain.

We define transforms with respect to space and time as

ik, t) = J m n(x, t) e 7 dx (2.8)

—00

+ 00
and 7k, w) = f 7k, t) et dt. (2.9)
Transform (2.8) is usually assumed to exist on the basis that all disturbances are
bounded in space and decay as |x| - o0, at each finite t. However, with the thin-plate
equation there is no upper limit to the propagation speed of disturbances, and these
properties do not necessarily hold. For example, if the fluid is absent, then the
Green’s function (the solution for #(x,t) when F(t) = &(t)) is y(x,t) = (4nt)H(t)
sin ((x?/4t)—in) and is O(1) as |x|—> oo for each ¢> 0. Nonetheless, the Fourier
transform over x still exists because of the rapid oscillations as |x| > o0, and we
assume that (2.8) always exists on the same grounds. Causality requires no response
for ¢ < 0 if the forcing started at t = 0, and (2.9) then exists subject to convergence
as t—>+oco. With instabilities (of maximum temporal growth rate ¢) present in the
system there is convergence only if Imw = w; > ¢. This condition may introduce
complications when we invert the transforms.
The solution in terms of the surface displacement is

n(x, t) = Z:F j::: Y(x, w) F(w)e * do, (2.10)
oikz
‘I’(ac,w)=£D(k’w)dk. (2.11)
Here
D(k, w) = (k*—w?*) — (0 —Uk)?/y(k) (2.12)

is the dispersion function and ¢ is the k-contour runnlng along the real axis. The
function y(k) = [k®— (w— Uk)?/c2]* has branch points in the k-plane and the cuts are
fixed by taking Rey > 0 everywhere in the k-plane. As ¢,— oo the fluid becomes
incompressible, and in this paper we shall concentrate on this case. Then the branch
points approach k£ = 0, and the cuts must be taken up the imaginary k-axis, from +i0
to tico. We rewrite D(k, w) in terms of two quintic polynomials P, (k), as

D(k,w) = (b°F Uk* — (0* F 2Uw) k F w?)/k = P_(k)/k, Rek = 0. (2.13)

To determine the surface response for real frequencies, and thereby to get the
response to single-frequency forcing, we require an analytic continuation of ¥(x, w)
as w; > 0. The integrand for ¥ has poles in the k-plane at appropriate roots of P, P,

Phil. Trans. R. Soc. Lond. A (1991)
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and as o, is reduced from values greater than e towards zero, the poles move in the
k-plane. For ¥ to be analytic in w the contour ¢ must not be crossed by any pole as
w; is decreased, and may therefore have to be deformed off the real axis.

2.2. Brazier-Smith & Scott method, and results for poles

Brazier-Smith & Scott (1984) use numerical methods to determine the loci of the
roots of P, P_. They are found with U fixed, for a single value of Rew = w,, as w; is
reduced from a large value to zero. The process is repeated to cover a wide range of
w, ; wide enough that all interesting behaviour is said to be picked up. In this way the
loci are determined, and are described in the paper by Brazier-Smith & Scott, for
U=5and w, = 3.2, 3.25, 3.3, and for two other values of U.

The roots of interest are those which will correspond to waves contributing to
the surface response. In §2.1, P, and P_ are defined in the half planes Rek > 0,
Rek < 0, respectively. We therefore define a valid root to be one whose path in the
k-plane finishes (as w; —0) in the region in which the generating polynomial is valid.
A valid root is a pole of 1/D(k,w), and with Im % = 0 generates a neutrally stable
travelling wave in the response. For roots above the (deformed) k-contour with Im
k < 0 we find corresponding exponentially growing or decaying waves respectively in
the region x > 0, and vice versa for roots below the contour, these producing wave
fields in < 0. Non-valid roots give contributions bound up with those of the branch
cuts, and of no distinct physical significance.

If two valid roots from different sides of the k-contour become equal, then the
contour becomes ‘pinched’ between them. If the pinch occurs for some w, such that
Imw, > 0, then the w-contour cannot be taken completely down to the real w-axis,
and the frequency w, corresponds to a branch point in the w-plane. The function
Y(x, w) cannot then be analytically continued as w, tends to zero and we cannot obtain
a representation of ¥(x,t) as a Fourier integral over purely real frequencies. The
response is dominated by the complex frequency w,,, and corresponding wavenumber
k,, and the system is absolutely unstable. The 1ntegral round the branch line running
downward from o, is dominated by a term of the form ¢~ exp (—iwyt+ik,x),
representing exponentlal growth everywhere in time. Thus if Imw, > 0 therc is no
steady state response to single-frequency forcing started at some time in the distant
past. If the pinch occurs with Im w, = 0 then the w-contour runs just above the real
branch point w,, and absolute instability is avoided.

Now the function P_ has one valid root (1), which, according to Brazier-Smith &
Scott, originates in the lower left-hand quadrant and moves up onto the negative real
axis as w; >0. The k-contour runs above this root and the wave generated is an
upstream neutral travelling wave. The results for P_ are qualitatively the same for
all U, and all w, > 0. Expressions will be given later for the wavenumber k = k3, the
single valid root of P_.

The situation with regard to P, is much more complicated. Figure 1 gives a
qualitative representation of the loci of the roots of P, for any U, with w, very small.
As w, is increased, the behaviour of the roots depends solely upon whether U is
greater than, less than, or equal to a critical value U, = 0.074 (the ‘absolute
instability boundary’).

For any U > U,, roots (3) and (4) pinch the contour at w, with Im w, > 0, leading
to absolute instability. Brazier-Smith & Scott demonstrate the pinch numerically for
U = 5, for which w, = 3.25. The velocity U = U, marks the lower limit for absolute
instability ; it is the highest velocity at which the pinch occurs on the real line

Phil. Trans. R. Soc. Lond. A (1991)
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Figure 1. Loci of roots of P, for any U, with w, very small, demonstrating the typically
deformed k-contour in Rek > 0.

(w; = 0). For any U < U, the analytic continuation down to w; = 0 can be completed,
we have a representation of the response as an integral over all real frequencies, and
we can regard ¥(z,w) as the causal response to single-frequency forcing at each real
w. Specifically, if F(t) = F exp (—iw,t), then for U < U, the causal single-frequency
response is

(e, t) = (F,/21) W(x, w,) exp (—iw,t). (2.14)

It is easy to prove that, when the analytic continuation of ¥(x, w) down to w; = 0 can
be completed, (2.14) is indeed the long-time limit of the solution with forcing F(t) =
F,exp (—iwyt) H(?).

In the specific case U = 0.05 < U,, Brazier-Smith & Scott isolate a value v, =
0.002259 as the upper frequency limit for spatial (convective) instability. This
frequency w, is characterized by the merging of poles (2) and (3) on the real line. No
pinch is produced; poles (2) and (3) are both above the k-contour. At a given U <
U,, pole (3) has Im k < 0 and therefore generates a wave growing exponentially with
downstream distance provided 0 < & < w,. Such a wave is referred to as a convective
or spatial instability wave. A second frequency, w, = 0.002365 for U = 0.05, is the
frequency at which a pinch occurs (between (3) and (4)) on the real line. Accordingly,
U, must be the velocity at which w, = w, (=w, say) and all three valid roots of P,
merge ; w, = 0.0047 is the pinch frequency, determined numerically.

Details of the behaviour of the roots for U = 5, 0.074, 0.05 are given in Brazier-
Smith & Scott (1984). We shall now determine the behaviour found by Brazier-Smith
& Scott using analytical methods rather than numerical.

2.3. Asymptotic analysis of P,(k, w)

Detailed analysis of P, (k,w) is unnecessary for U > U, (=0.074), as we shall see
that in this range the system is absolutely unstable (and in (2.24) we shall give the
exact expression for U,). Attention is therefore confined to the case U < 1, and we
shall use the formal limit U->0 as the basis for asymptotics.

In turns out that there are only two distinguished scalings for w which lead to the
involvement of the mean flow in a significant (leading-order) way. These are v =
O(U?) and w = O(U3). The first of these gives results valid down to @ = 0, and covers
the whole of the convectively unstable range 0 < w < wy(U) together with a range of
frequencies above wj in the anomalous neutral propagation range wy(U) < o < w,(U).
The second gives results which overlap at the lower end with those from the first
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Fluid loading with mean flow. 1 565

(w = O(U?)) scaling, which complete the description of the anomalous neutral range,
and which go some way beyond it, into the range w > w, in which mean flow effects
are very small.

As w increases beyond w,,, the next distinguished scaling is found to be w = O(1),
the results for which are well known (see, for example, Crighton 1989) and describe
a structure subject to heavy fluid loading by static fluid. Beyond that, for w =
O(U™®), any o > 0, the fluid loading becomes small and to leading order we have a
vacuum dynamics problem, free of both mean flow and fluid loading effects. Since we
are interested only in significant mean flow effects, we confine attention to w = O(U?)
and @ = O(U5) when o is real. Causality requires us, however, to track singularities
in the k-plane as Im & decreases from large positive values to zero, and this can be
done by matching a series of values of k(w) corresponding to scalings |w| = O(U?),
O(U%), O(1), O(U~*). Alternatively one can supplement the investigation for w =
O(U?), O(U5) with a limited amount of numerical work for larger |w|.

Write w = U2Q2 and keep 2 = O(1) as U~ 0. Then we find that P, has two roots of
order U,

k= UQ+ (UQQ2—1):4+0(U?), (2.15)

these corresponding to (2) and (3) in figure 1, and three larger roots
k= Ut en™/s _2Q —303Q2 e~2nmi3 —GQ8 U+ O(U?) (2.16)

for n = 0,1,2, of which only » = 0 gives a valid root, corresponding to (4) in figure
1. We note that (2.15) indicates purely neutral propagation for £2 > 1, approximately,
and gives complex conjugate values of k for 2 < 1. From the global picture given by
Brazier-Smith & Scott, we may identify the upper limit for convective instability as

o (U)~ U as U—0. (2.17)
This gives wy = 0.002500 for the case U = 0.05 frequently taken by Brazier-Smith &

Scott, compared with their numerically determined value 0.002259. Calculation of
some higher terms gives us a closer estimate. We find
k= UQ+ (UQ)HQ2—1):+1U%(5Q4 — Q2)
+ LU /20502 — 1)) (54 — Q)2 + BUSQHQE —1)i+ ..
and the second and fourth terms on the right can be taken as indicating a shift of the
neutral condition to

Q2—14+3U/Q23) (62*— Q%)% = 0.
This gives
wy(U) = U*(1—2U0+ 0(U?)), (2.18)
and for U = 0.05 gives v, = 0.002250, with a discrepancy from 0.002259 of exactly
the order of the neglected term in (2.18).
In the range w = 0(U?%) we put w = Usd, A = O(1), and find that all five roots of P,

are 0(U§), .
k= Usk,+... (2.19)

where Q. (ko A) = kj—(A—kKy)? = 0. (2.20)

This quintic expression represents a balance between the plate stiffness k* and the
fluid inertia term (w— Uk)?/k with inclusion of mean flow effects; only plate inertia
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566 D. G. Crighton and J. K. Oswell

(w?) is negligible. The function @, has an inflexion point at «, = 1073 for all 4, and
a repeated root at k, = 54/3 for 4 = A, = (2* 33/5%3. For A > A, it has one positive
real root, and two pairs of complex conjugate roots, one pair with Re«, < 0, while
for A < A, it has three real positive roots and one pair of complex conjugate roots
(that pair in Rek, < 0). All this corresponds precisely to the situation described by
Brazier-Smith & Scott for @ > w, and v, < © < w, respectively, and to leading order
we therefore have the real axis pinch frequency (for which dw/dk = 0) as

w, ~Uid,, A, =N = (223%/5%} (2.21)

For U=0.05 we get w, =0.002210, as compared with the computed value of
0.002365. A higher approximation to the repeated root is easily found as

w, = NUH1+SNUS+O(U)} (2.22)

and from this we get w, = 002332, in good agreement with computation.

It remains to be said that the results for w = O(U?) are easily checked to be
uniformly valid down to w = 0, and that those for w = O(U?) and w = O(U?%) match
asymptotically in the overlap domain w; < w < w,. Further, as |4]| increases, the
quintic @, (x,, 4) can be approximated by «j— A% whose roots describe the low-
frequency heavy fluid loading of the plate in static fluid. That approximation in turn
fails at 4 = O(U %) (w = O(1)), where plate inertia becomes significant and comparable
with the fluid inertia, but at these and all higher values of |w| (for which indeed the
fluid loading effects become completely negligible) there are no significant effects of
the mean fluid flow. Note that this implies that the way in which the roots k(w) recede
to infinity as Imw increases to plus infinity is governed solely by the dispersion
function k*—w? of the plate in vacuum. This dispersion function is not significantly
changed in structure if plate damping is introduced either through a term
proportional to 0%/0t or by making the bending stiffness complex with a small loss
factor. The problem with damping was considered in an unpublished paper by D.
Atkins mentioned by Brazier-Smith & Scott (1984) and Carpenter & Garrad (1986).
Here, apparently, the system is found to be absolutely unstable for all flow speeds.
However, the damping factor does not enter in a significant way and therefore the
growth rate must be small, of order the damping coefficient, implying that the
analysis here for zero damping must apply for many oscillation periods.

2.4. The local behaviour of the roots

The roots of P, and P_ correspond to the poles of the integrand for ¥(x, w), and for
an analytic continuation of ¥(x,w) the k-contour must not be crossed by any pole.
It is important to determine the paths of the roots as Im w is reduced from infinity
to zero since it then becomes clear whether or not the contour needs to be deformed
off the real axis to avoid being crossed.

Returning to the original variables, with |o| < Uf < 1, equations (2.15) and (2.16)
yield expressions for the roots of P,, in the convectively unstable range, as

Ko > 0/Ui(/UF, Ky USe™—3o/U)—§w*/ U e ™5, n=0,1,2.
(2.23)

Setting ® = w, +iw; and letting w; increase from 0 to o(U%) we find that the local
behaviour in the k-plane is as described by figure 2.

For the paths to be fully determined we need to extend the range of the analysis
to cover O(U?) < w; < o0. Using our sequence of matched asymptotic expressions for
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Tigure 2. The local behaviour of the approximate roots of P, for w, = 0.002, U= 0.05, (0, < U
with an appropriately chosen wavenumber contour c. ,O0< 0, <U?% x x x x, U< w, <Us.
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—

the roots given in §2.3 this can be done, but involves extensive algebra, and it is
necessary to calculate the behaviour of the roots numerically using the full equation
(cf. Brazier-Smith & Scott 1984), at least in the range 4 = O(1); for larger 4 it is
possible to again track the roots analytically. The upshot is that the local behaviour,
indicated in figure 2, is representative of the global behaviour in establishing whether
a pole does or does not cross the real k-axis, at least in the convectively unstable
frequency range.

In this problem absolute instability will occur if either £ and k3 or & and &} merge
for any w; > 0 (kT, k7, k} corresponding in figure 1 to (2), (3), (4) respectively). Local
analysis can be used to show that a pinch between the roots kI and k} can not occur
for w; >0, when U > U,, and thus cannot lead to absolute instability; this is
produced for U > U, by a pinch between k; and kj. At the critical velocity U = U,
however, this pinch occurs on the real line w; = 0, and because £} and k} are complex
conjugates, it follows that for U = U,, P, has a triple root. This phenomenon can be
used to determine U, exactly. At a triple root P, (k) = P/ (k) = P’ (k) = 0, and solving
these equations yields

w, = (32555 U where U, = (2i51/3%)[2—L(15)]5. (2.24)
The numerical values of these, w, = 0.004715, U, = 0.07424, reproduce exactly those
found from computation by Brazier-Smith & Scott.

Similar asymptotic analysis can be carried out for the roots of P_(k,w), but the
relevant results are much simpler, as P_ has only one valid root for real w, referred
to earlier as (1). For w = U?Q, Q2 = O(1) this root is

by =—US—3UQ+3UQ* —14Q3 U+ O(U?), (2.25)
and for w = Uid, A = O(1) it is
Iy = U+ ..., (2.26)
where A, is the unique real negative root of
Q_(Ay, A) = A5+ (A—A,)? = 0. (2.27)

These asymptotic determinations of k; match as Q - 00, 4 -0, while (2.25) is good
down to w = 0. The series (2.26) fails for large A, but then, as with P, we are back
to the dominance of static fluid loading and then for still larger 4, back to vacuum
plate dynamics. From this it can be inferred, and verified by computation, that the
one valid root of P_ is real and negative for real w, and moves up from the third
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568 D. 4. Crighton and J. K. Oswell

quadrant onto the negative real axis as w; decreases from + o0, all as stated by
Brazier-Smith & Scott.

We must point out that the local behaviour of the roots for small positive w,
indicates also their global behaviour for all positive w; only in the convectively
unstable régime w < wy(U) and in the conventional stable régime w > w,(U). In the
anomalous neutrally stable régime the local and global variations of the roots k(w)
may be qualitatively different. Discussion of this topic is deferred to §5.

To summarize this section, we have identified two distinct scalings, o = O(U?) and
w = O(U%), in which mean flow effects play a significant role, and we have determined
asymptotic expressions for the extent (0, w (U)) of the convectively unstable region
and for the extent (wy(U), w,(U)) of the anomalous neutrally stable region. Asymptotic
expressions, as U — 0, have been found for the wavenumbers of the neutral waves and
the instability waves for 0 < w < w,(U), and it has been shown that the wavenumbers
denoted by ki, kf move downwards from the upper half plane to their final positions
as w; decreases to 0%, while k3, k; move upward, from the fourth and third quadrants
respectively. Accordingly, for a causal solution, the k-contour ¢ follows the real k-
axis, with an indentation above k;, and above k;, and with indentations below k7
and k. Therefore k} and k; will contribute neutral waves upstream of the excitation
at « = 0, while k3 and £ will contribute instability waves, convectively amplifying
and decaying, respectively, downstream, provided o < wy(U), and will contribute
neutrally stable waves downstream if o (U) < o < w,(U).

Most of the above are asymptotic results, for U—0. By contrast, the expression
(2.24) for the absolute instability boundary U = U, is exact.

3. The surface response and admittances
3.1. Introduction

We wish to investigate the effects of the convectively unstable waves upon the
system (and we shall find later that there are also unusual phenomena in the narrow
frequency range w, < w < w, in which there are only neutrally stable waves). We
restrict attention to the region of the (w, U) plane with w < U?, U small, where w, ~
U? is the approximate upper limit for convective instability, as determined in §2.3.

Figure 3 shows the paths taken by the roots of D(k, w) as w; -0, and the deformed
contour ¢ which yields an analytic continuation of ¥ as w; ~0. We have shown that
the response can then be represented as an integral over real frequencies, and
therefore that we can consider single-frequency forcing, F(t) = Fye ! without
further reference to initial conditions provided the deformed contour ¢ is used. Then
the transform of F(t) is F(w) = 2nF,d(w—w,). Using these results with (2.10) and
(2.11) we determine the surface response to fixed frequency forcing as (cf. (2.14))

n(x, t) = (F,/2n) P(x, w,) exp (—iw,t), (3.1)
h @ P ek 3
where (x, 0,) = V(2, 0)|,_,, = Lm o0, (3.2)

Once ¥ is determined we obtain an explicit expression for the surface response. An
exact evaluation of ¥ is possible in terms of Ei functions, but this is not helpful, and
so we look for approximate solutions with x large and x small, from which we obtain
the surface response in the far and near fields respectively. For brevity the suffix on
w, will now be dropped.
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r Im k

Cy

~ Re k

Figure 3. The roots of D(k, w), the contours c,,c_, and the route taken by the completed contour
when closure takes place in the upper half plane. Note that the two distinct regions of validity of
P, (k) are separated by two branch cuts from k& = 0.

3.2. The far-field solutions and line transfer admittances

There are two far fields, upstream of the drive point and downstream. We
anticipate that the effect of the flow will be to produce a qualitatively different
response in these regions.

We proceed with equation (2.11), which can be rewritten using (2.12) as

ikx k, eilcz

€
P, w) = J AT Lw) P ok (3.3)

c_(w) ©—

where ¢_(v) and c,(w) are precisely the parts of ¢(w) in the regions Rek < 0 and
Re k& > O respectively. For 0 < w < wg, P, P_has ten distinct roots, and we rewrite the
above as

yj 5 k‘; eilcx Y 5 k; eilcx d
, W) = . —dk+ - k. 3.4
(x w) n§1 P—(kn’ w) Jc_(a)) k_kn ’ n§1 P+(k;> w) J;_,_(m) k"—k; ( )

With « > 0 (downstream) we close the contour in the upper half plane as in figure
3. The only valid poles enclosed are ki and kj. The contribution from integration
around the large arcs vanishes, and the branch cut contribution decays like 1/2* as
|#| - 0o from standard arguments. By using (2.23) for £} and k3, and for simplicity
taking 2 <€ 1, we find (aside from the branch line contribution)

(@, 1) = (Fy/2U0%) exp [i(w/U) (@ — Ut)}{exp [(w/ V)] —exp[ — (w/U)k]}. (3.5)

Both waves are outgoing in phase velocity ; indeed, the phase velocity is just the flow
velocity. The wave generated by the pole kj decays exponentially as it propagates
downstream, while that generated by ki grows with displacement from the drive
point. This wave corresponds to a convective instability with spatial growth rate
(w/U)t, and dominates the downstream response.

With « < 0 (upstream) we close the contour in the lower half plane, again taking
care to avoid the branch cut. The valid enclosed poles are k; . Similar analysis reveals
that (again aside from an algebraically decaying branch line integral)

y(x,t) = — (iF,/3U?) exp{ —iwt—2i(w/U) x} [exp (iUsz) —exp—(iUz)],  (3.6)
which at lowest order is a standing wave
p(x, t) = (2F,/3U)sin (Usz) exp (—iwt),
Phil. Trans. R. Soc. Lond. A (1991)
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570 D. G. Crighton and J. E. Oswell

but which at next order reveals upstream propagation with phase and group
velocities each of magnitude U directed towards = —co. Although this might be
expected, one of the two waves in (3.6) is a negative energy wave, and therefore the
corresponding energy flux is actually directed towards the excitation; see §5.

We now introduce the line transfer admittances A% appropriate to x>+ o0
respectively, and defined in the convectively unstable region by

V(@ >+ 00,t) = AL (ki) Fy e @ e 70t

v ——00,t) = K4, (k+)elk+x+A (k3) 1/c3x]e—m,J (3.7)

where v = O7/0t is the plate velocity. In the anomalous neutral propagation range
wg < w < w, the first of these has a similar additional contribution from wavenumber
ki and it will turn out that this must also be included in the convectively unstable
region, where it decays exponentially, when the energy fluxes are calculated in §4. By
using equation (2.2), which links the surface velocity and response, we can determine
expressions for 47 (k3), A (ki). We find, for w < U? for example,

AL () = wky /P(k]) ~ —iw?/20%, |
A (kf) = —wki /P (ki) ~ Fo/3U |

We use these A4} in §4 to calculate the energy fluxes in the fluid and plate in each
far field.

(3.8)

3.3. The near-field solution and line drive admittance

The surface response in the near field is given by equation (3.1) in terms of the
integral (3.2) with |z small. We restrict attention to the drive point (x = 0), for which
(3.2) becomes, in the variable 4 of §2.3,

7l
UP(0, w) = f dy
e (" = A0 [yl = (A —)*
and since the plate inertia term is uniformly negligible when 4 < O(1) the integral
defines a function of A4 alone. This can be evaluated in elementary terms when
4 < 1 by dividing the deformed path c(4) at = +4 for arbitrary real 4 satisfying
A <A <1. Then

—A d’i +A lﬁldﬁ +00 d’i
w0, ~f _f +f _dy
Ot wir—n Y . =g, 5=

where the signs Q, U indicate deformation of the path above or below the relevant
singularity. The first and third of these together give a real value 2In 4 + 0(4?), while
the contribution of the middle term is —mi+2+2InA—2InA4+0(A4/A4)?, and thus
we determine

P0,0) = (1/U?)[2+2InA—7i], A< 1. (3.9)

We introduce the (dimensional) line drive admittance Ao, such that v(0) = v, =
Ay F,. The admittance 4, is scaled accordlng to Ay = p, BiA,/mi. We drop the * and
refer to 4, in its dlmensmnless form. 4, is determmed from equation (2.2) and the
expression for the response at the drive point as

Ay =—iw¥(0)/21 = (0/U*){—1—(i/n)[1+]n (w/U3]}. (3.10)

Now Re 4, is a measure of the power input from the forcing. The above result is

unusual in that Re4, <0, so that the mean rate of working of the drive force is
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Fluid loading with mean flow. I 571

HF|?Re A, < 0, and to maintain the postulated motion, the drive mechanism must
accept and dissipate energy at the mean rate }|F,|*|Re 4,|. The source of this energy
must lie in the mean flow, and the excitation has provided a coupling whereby the
mean flow energy can be converted into fluctuation energy in the fluid and in the
plate. We shall see shortly that this property ReA, <0 extends in frequency
precisely over the whole of the range 0 < @ < w,,. This range includes the frequencies
ws < w < w, in which the system is neutrally stable and is not confined to the range
0 < w < wg in which the system is convectively unstable.

We note also that throughout the range of validity of (3.10) (4 € 1), Im 4, > 0 and
the reactive part of the drive point motion is controlled by an effective mass.

It is possible to carry out similar calculations for the high-frequency cases. For
0(1) < A4 < O(U%) we approximate the denominator of the integrand for ¥(0, w) by

iyl — A% for all ¢,
and determine A, to be

Ay = (1/50%)[1 +2i(3 sin in —sin 21)]. (3.11)
For A > O(U%) we use the approximations
—AX(Udly|+1) for y small; (54— A2U8)|y| for 7 large,

and thus for very high frequencies, with U small and fixed, we determine 4, to first
order as
Ay = (1/40%)[1+i]. (3.12)

Thus for all 4 > O(1) we find that Re4, > 0 and the mean rate of working of the
drive force is positive ; as would naively be expected in a stable system (but note the
result of §4, that Re4, <0 in the stable range w, <w < w,). We also find that
Im 4, > 0and this corresponds to mass dominated behaviour at the drive point at high
frequencies.

We have excluded a direct calculation of 4, for 4 = O(1), but this case will be
covered by the general results of §4.

Equations (3.11) and (3.12) correspond exactly to expressions determined for the
line drive admittance by Crighton (1972). Equation (3.11), after rescaling, gives the
admittance in the no-flow low-frequency or very-heavy-fluid-loading limit. Equation
(3.12) is equivalent to the admittance for a line driven plate in a vacuum (no fluid
loading).

4. Energy balance in the coupled fluid-plate system

4.1. Formulation of a coupled fluid—plate energy equation

It is possible to construct a single energy equation for the whole fluid—plate
system. Multiplication of the plate equation (2.1) by the surface velocity followed by
integration along the plate segment X, < x < X,, (y = 0), yields an energy equation
for the plate,

d (X:1 a” 2 6277 2 _ X,y X an Xy a” 8377 677 6277 6277] X,
dt Xﬁ[(&) +(@) do=| Fo@gde=] P o o o dwarl |,
(4.1)

The left-hand side represents the rate of increase of kinetic and potential energies in
the plate. On the right we have the rate of working of the applied force, the rate of
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working of the fluid pressure and the net flux of mechanical energy into the plate
section [X;, X,].
Integration of (2.7) over a volume V bounded by a surface S yields

d [ yye: 9P\ (% D) 4as —
@ V§(V¢) dV+L<p+ Uax)(ax’ay) AdS =0, (4.2)

where 7 is the outward unit normal and S consists of the plate segment X, < < X,
with a connecting fluid surface. We may deform the fluid surface into any shape and
we ensure that the most appropriate surface is chosen by examining the fluctuating
field.

For all values of frequency the field consists of waves generated by the valid poles,
and contributions from the branch cut integrals. The latter decay like 1/|x|* and
therefore carry no energy to the far fields. Waves generated by valid poles are of
three types; exponentially decaying waves which do not reach the far fields; and
neutral travelling waves, and exponentially growing waves both of which carry
energy to the far fields across planes normal to the plate. Accordingly, we deform the
surface S into a ‘box’ whose sides run parallel to the axes. Thus

d 1 2 _ 7 % % — " % %
T Vg(VqS) dV—f (p+U ) dy N L (7)+Uax)axdy

0 O ) 0w 7 |, =X,
XZ
+J <7)+U%)%dx (4.3)
X, ox) Oy y=0

All waves decay exponentially as y — 00, and therefore we have omitted from (4.3)
an integral over [X,,X,] at large y. From left to right in (4.3) we then have the rate
of increase of kinetic energy in a fixed volume, and the flux of energy in the fluid
(measured towards increasing x) far upstream and downstream of the drive point.
The final term is the energy flux into the fluid from the surface of the plate, and
substituting for 0¢/0y from (2.3) and p from (2.4) we can rewrite it as

T o *e(0p Oy op O _

Equations (4.1) and (4.3) now have in common a term in p d5/0t and elimination of
this term yields a single energy equation. We have also, however, to modify the left
side of (4.3), for the energy equation must refer to the energy of the fluid in the
volume actually occupied by fluid. Thus, the fluctuating energy 7; in the fluid must
be defined as the quadratic approximation to

0 X,
f dy f Q[T+ )2+ 32— 3UP),
n X,

0 X, Xy
which gives T, = f dyf dal(Ve)? — Uf 1P, (y = 0)dz, 4.4)
0 X, X,

and the final energy equation is

d Xy D
G B+ T+V) = L ,l'c?(x)%dx+(Jf+Jp+pr)(Xl)—(Jf+Jp+pr)(X2). (4.5)
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Fluid loading with mean flow. I 573
Here
1 Xy a,}? 2
T = —J (—) dx 4.6
D 2 X, @t ( )
is the kinetic energy in the plate,
1 Xy 62,’7 2
V,= 3 J:Xl (@) da (4.7)
is the elastic (bending) energy in the plate,
5= | g gy 8
0
is the energy flux in the fluid across section z,
Jp = Naaa Mt~ Naz Nat (4.9)
is the mechanical energy flux in the plate across section x, and
Jor = Unep, (4.10)

is a coupling flux term (which we note, in contrast to the other fluxes, is not expressed
in terms of locally measurable primitive variables such as p and the velocities ¢,, ¢,
but in terms of the non-local potential ¢ itself).

Although we have looked at the behaviour of the poles for complex frequency, our
final solution for the response when U < U, is a steady state solution with time
dependence e !, w real. All the instabilities are convective and grow with
displacement from the drive point and not with time. Defining time averaging such
that (f(x,t) g(x,t)) = tRe{f(x)g*(x)}, we then have the steady-state energy equation
in the form

J(X,) = J(X,)+1,, (4.11)

where J(x) = (@) + Jp(2) + Jpe(), (4.12)
X2

L= [ Relfd@ afde = Y Re d, (4.13)
Xl

and J, J,, J,; now refer to the time-averaged fluxes defined in (4.8)-(4.10).
The integral I, represents the power input into the system by the line forcing at
the origin. If the plate segment is chosen such that the drive point is excluded, then
o = 0. The integral J; represents the flux of energy (towards increasing z) in the fluid.
The flux term .J,; describes a coupling between the fluid potential and the surface
velocity. This term is unusual in that it contains a non-primitive quantity ¢, and we
note that it is found only when there is a flow present and U # 0. It has no physical
interpretation as yet, but it is significant because it indicates that there is a
mechanism present by which the plate and fluid can exchange energy directly when
the fluid is in bulk motion. The flux term J, is standard, and represents the flux of
mechanical energy in the plate. Equation (4.11) states simply that the total flux J
defined by (4.12) is constant between stations X,, X, if there is no energy input in that
range, and increases by the mean rate of working of any external forces F; otherwise.
The result is general, but simplifies when X, and X, lie in the far fields upstream
and/or downstream of the excitation.
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574 D. G. Crighton and J. E. Oswell

4.2. Determination of the potential and pressure
We have obtained the plate velocity as

Ay F,e it x=0,
vla,t) = { FLALRD) e 7+ A% (k) e ¥ e, 2>+ 00, (4.14)
F[A7 (k) e e+ A7 (k) e'Fs e x> — 0.

Solving Laplace’s equation with decay conditions as y — oo and using the conditions
at the surface then gives the corresponding potential and pressure in the fluid. The
expressions hold generally in the range U < U, in which range the roots have been
shown to change their character with frequency. The surface displacement, surface
velocity, fluid potential and pressure can all be determined for any frequency, using
these equations together with the appropriate expressions for the roots and
admittances.
4.3. Evaluation of the energy fluxes

The energy integral will be evaluated in the three régimes, o < vy, w; < © < w, and
w, < w, with U < U, throughout.

We begin by considering the waves downstream of the drive point. To second
order, with @ < wj, the roots kf , are given by

kf = 0/U+i(w/U),

but in what follows the results are exact. The lower sign root generates an
exponentially growing wave which dominates the downstream far field. The upper
root generates an exponentially decaying wave which fails to reach the far field.
However, the energy fluxes J, J,, J,; must be calculated using the expressions for the
pressure, velocity, etc., for both waves; cross terms appear because of the presence
of two waves. The results are summarized in table 1. The net flux of energy
downstream associated with the wave (%2 ?) is the sum J of J(ky), Sy (k) Jpp(key).
Each contribution is exponentially large and if we are to satisfy (4.11) with X, X,
both positive (I, = 0), then we anticipate J(k}, X,) = J(k},X,) = 0. From table 1, we
determine the downstream flux associated with the growing wave (ei’“;’) to be (note
that we use an overbar to indicate complex conjugate where necessary)
_ B A5 (k)1

Sk, X, >0)= 10 WOXP (kg —k3) X,]
2

x Re {(0?— U3 1?) + kg 1P(k3 + k3) (k2 + k5 (4.15)

We observe that the real part of the curly bracket is equal to

e 0200 _PET L,

) T

and so the net flux of energy associated solely with the exponentially growing
downstream wave is indeed zero, i.e.

J(ky, X, >0)=0, when w<w, with U<U.,. (4.16)

A similar calculation of the flux associated solely with the decaying wave shows that
this too is zero. The cross term, however, produces a net downstream flux. Using the
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Fluid loading with mean flow. 1 575

results k{ = kj and P, (k] ,) = 0, Pl(ky ) = Py(kT ,), for v < vy, U < U,, we substitute
for A% (ky ,) from equation (3.8) to determine

Sy, by, Xy > 0) = {0 Re {ky /P’ (k1) + k3 /P (k)
The total downstream flux is given by
J(X, > 0) = J(ki, X,)+J(ky, X,)+J (kT k), X,), (4.17)
= ilF|*0 Re {ky /P (k{)+ k3 /P (k))}, o <w,, U<U, (4.18)

With the frequency in the range vy < w < w, the roots are given to second order
by
ki, =o0/Utw/U,

but again the results below are exact and do not use this approximation. The roots
are real and unequal, and generate two outgoing stable travelling waves. Both waves
are seen in the downstream far field and both are used in the calculation of the energy
terms. Cross terms again appear. The results are summarized in table 1.

We begin by considering the cross term. With reference to table 1, it can be written
as

1 k) P.(ks
Jk! kel X, > 0) = k++k+[ +]£+1)_ +]£+2)]
1 2
x Re{dBexp[i(k] — k) X,)+ ABexp [ —i(ki — k) X,} =0

where A = AL (kf) and B = A% (k$). The cross term vanishes identically and the net
downstream flux is made up of direct contributions from the waves e*1 Xz and el X
only. We write the net flux as

F|? w—UkH? 20(w— Ukt
J(X,>0) = | I{M*(ls* IZ[( kﬁl) (kf 1)+4lq3]
—Ukt? 2U0(w—Uk;
+|A:o(lc;)l2[(w k;22)+ (‘”k; 2)+4k;3]}, w,<w<w, U<U,

(4.19)
By using equation (3.8) and P, (k] ,) = 0, we rewrite (4.19) in the form
J(X, > 0) = §|FPw Re {ky /P (k) + ks /P (k3)}, os<ow<w, U<U, (4.20)
Equation (4.19) can be rewritten again, in terms of the group velocity and mean
energy density. Differentiating P, (k, ) = 0 with respect to k£ we determine the group
velocity as
dw/0k = 5k* — w4 2U(w— Uk) /2[ wk + (0 — Uk)].

We may use P, (k,w) = 0 to substitute for the square brackets in (4.19), and we then
rewrite that equation as

(w—UkT) (w—Uk$)] dw
2 + +\ 12 + +\12 <
J(X, > 0) = £ {|A (k)| [1+——k;r akJr-HA (k)| 1-|--———————w]c;r —-———ak;. (4.21)

The downstream flux, given above, is equal to

0 w
J(X, > 0) = T(k}) a]“i+T(k )5 (4.22)
2

Phil. Trans. R. Soc. Lond. A (1991)


http://rsta.royalsocietypublishing.org/

Downloaded from rsta.royalsocietypublishing.org

— (Ga)ida/ 340 —
- m.mu\ma -
— S/ (a0 —o)9n —
— 292/ (3a0—m)g —

~ F s

3

V/
2]

3

0 (Ga)de/3am (29)5de/ e r
(@ (S — L)) soo [(Gy + L) Sty + 3 + L4 gV 43T S 4 r
T 14
—~ 2 _ 1 +Q\ +0\
3 (@ (B —Iy)) s00 T - g LL qavn f/Gan—o)an A/ =™y “r
@
S (2 (3 — 1)) 500 Sty .
& A= o (Can — gy e/ — ) e/ (20— ™)y r
Nm nsos o ()
S () id/ a0 0 0 r
S
S
< AT VF [ (B9 — Sy)1] dxo (3y + F) Sl gl [ (Iy — fy)u) dxo (J + f9) 19| wl r
te
S i) &y 1)
. - d
& (1 —o)gvie [« (24— E)] dxe (£ — @)lgln [ (3 — Iyt dxe (30 — @) ¥ln r
& o (B9 +39) %y Gy + 5 .
(N —o)gy [z Gy — 2l dxe (Byn —m) Gan—m)lgl [=(y—Hyldxe(yn—o)(yn—o)lyl T
o> o ()
ULI9) SSOIO By Iy {wIe) Xny A31ous
Sﬁ@ppwﬁaoﬁ

(‘uoxey jaed
[ea1 oyy pue mg/1 £q perdnmut oq 0y st Xny yora teydang “r+'p+ir = pue (T =q (M) Ty U =0 CNIpy =g (PIy Y = p owq)
uoYDITI Y] fo WpdAsUMOP PUD WdLsdn saxnyf fibioua 2yy 4of synsas poxs Jo Rivwaung T o[qe],

Phil. Trans. R. Soc. Lond. A (1991)

576

ALIIDOS 1o anans | Y7 ALIIDOS 10
w2 | W VAW THL IWaHosoNid o2 | W TvAOd THL Wothosonid


http://rsta.royalsocietypublishing.org/

Downloaded from rsta.royalsocietypublishing.org

Fluid loading with mean flow. 1

577

— () da/ %0 — r
— e 4T — r
— B /(540 —™)an — — “r
| mm&\uAmv\b |3vNQm] - u\o
os % (n)
0 (Ey) de/ %40 (E3)de/ fam r
{[o (B — Ey)1— ] dxe By + [ (B — Ey)1) dxe S} (B + E) @0 =0T 4208 r
€ €.
£ Sy
A? (% —Sy)1—] dxo (fyn —o) [ (%y— Sy dxa (%41 |L o /(=) — /G20 =)0 r
%y Hy (G — ) o) e —_ @ ;
e Cy— S~ dxo ' [z (g — o dxo | (9 —) (an—o)ao <1/ = O)elr— /(0 =)t r
foso )z
ULIY} SSOIO By Sy jw1e) xny ASreus M\
wreaxrysdn m
3
S
>
&
g
3 40 N3 h ¢ 40
& ALIIOOS SNOILDVSNVIL V, ALIIOOS SNOILDVSNVYL

i V TVAOY THL IVDIHOSOTIHY

TVAOY IH.L 1vDIHAOSOT1IHd


http://rsta.royalsocietypublishing.org/

Py
/,// \\
J

A
( P 9

A

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

"/\\
A Y

A

i \

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

578 D. G. Crighton and J. E. Oswell
where
T(ky) = (1K */40*) AL (k) Plo® + k4 (0 — Uky)* [k, + 2U(0 — Uk,)] - (4.23)

represents the mean energy density associated with the particular wave e2%. The
expressions for T'(kT), T'(ky) are found by calculating the total time averaged mean
energy density per unit length of Oz. (Details are given for the single downstream
wave case in the next paragraph.)

For frequencies in the range w, <, the root ki has a positive imaginary
component and the wave generated decays exponentially as it propagates
downstream. The root &} is real and is given to second order (for Us < w < Ui) by

ki = wf—20/50",

though again the following results are exact. The wave generated is outgoing and
stable and it alone is used to calculate the energy terms. The net flux is found to be

B2 1A% (k) [ (0 — Uk})?  2U(w—Uky)
— 0 0 2 2

4w ki? ky

J(X, > 0)

FAE | = Yo e (/P4 1)
(4.24)

(w—Uk})

= P EDE |1+ O
2

]%}a—);, when w, < 0, with U< U,. (4.25)
2

We can write the flux in terms of the mean energy density and the group velocity.
To check this result we calculate the time averaged wave energy density per unit
length of Ox. The time averaged kinetic energy in the plate, per unit length, is

T, = i Refn, 7} = §lF* 1A% (k)1
and the associated mean elastic energy in the plate is
Vo = 1Re {0y, Tz = 3B 1AL (k) [* byt /®.
The corresponding fluid energy 7} is made up of two contributions, as in (4.4),

B ELAL ) [ (0 — URE)? U —UkS)
40? ki 2wk}

T = Re{—iF, A} (k]) etFie o7kiT},

The total mean energy density 7' is the sum of 7}, V, and 7, and after substitution
using P, (k3) = 0, we find that

Te}) = HFEIAL () 21 + (0 — Uk ol . (4.26)
Equation (4.25) then gives us the required result, namely
J(Xy > 0) = T(ky)0w/dky, when o, <w, with U<U,. (4.27)

Thus the flux is associated with propagation of the energy density at the group
velocity when the single neutral wave propagates downstream (v > w,); and (4.22)
states that in the range v, < w < w,, when two neutral waves propagate downstream,
the flux is composed simply of the sum of the two energy-density—group-velocity
products. On the other hand, in the unstable range 0 < w < w,, the flux arises solely
from interaction between the decaying and amplifying waves.

The roots ky generate waves upstream of the drive point. For all w < w, the roots
are given, to second order, by

ki =+ Us—20/30.
Phil. Trans. R. Soc. Lond. A (1991)
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Fluid loading with mean flow. I 579

The roots are real and one incoming wave (e**:%) and one outgoing wave (e'*3%) are
seen in the upstream far field. The energy flux terms are evaluated exactly using both
waves, and cross terms occur. The results are summarized in table 1. We consider the
cross term first. With k5 real, we find that P/, (k3), P_(k3) and A (k&) are real. The
cross term can be rearranged to yield

Sy, Iy, Xy < 0) = |Fy|*(0” — k5 *k5®) /20(k; — k3)
X A (k3) A (ky) Re {exp [i(ky —k3) X,]1—exp [ —i(kj —k;) X,]} = 0
Hence the net flux in the downstream direction (at a point upstream of the drive) is
given by
0—Uk;)? 2U(w—Uk})
+2 + ¥
k3 k3

+|A;(k;)l2[—(w(_k€])]§;) —QU(‘”]C__ Uk5)+4(k;)3]} (4.28)

s, <o =Pl k|

1|F|2wRe{ ks o by } (4.29)
Pl(ks) P~ (k)

Equation (4.28) can be rewritten in terms of group velocity and mean energy density
as

2 412 (0—Uk3)| dw — (12 (0—Uks) | Qv
I, < 0) = e | 1+ T IR |}

(4.30)
and this is of the same form as (4.22).

With the frequency in the range w, < w, the root kj has a negative imaginary
component and the wave generated decays The root kj is given to second order (for
Ut < w < Uf) by

Iy = —wi—2U/5u5,

and it generates a stable outgoing wave. The results are summarized in table 1, and
are precisely those given above in equations (4.28) and (4.29) for the wave e'*s% alone,
together with the relevant expression for k;.

4.4. Confirmation of equation (4.11)

Using the results of the previous section, and with (4.11) in mind, we determine the
net flux difference between station X, > 0 (downstream) and X, < 0 (upstream) as
follows.

(i) <o, JX,)—-JX, —llFlsze{ key n ks ki kg }
. : Pkf) " PL(kf) Piky) Plk))’

(i) wy<w<w J(X,)—J(X, _1|F|2(1)Re{ kf + k3 _ k} _ ky }
s v P Pk PL) PLg))

(i) o, <o, J&X,)—JX )—1|F|2wRe{ it _’“5_}
L PL(k3) PZ(k;)]

Phil. Trans. R. Soc. Lond. A (1991)
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580 D. G. Crighton and J. E. Oswell
For the remaining term in (4.11), we have
I, =4{F > Re A¥ = |F|?0 Re {i¥(0)}/4m. (4.31)

We determine ¥(0) in the Appendix. Using the results we rewrite [, as

I—l|F|2wRe{ it + e Bk }
o Pi(ky) Pi(k3) PLky) Plky))

(4.32)

For frequency in the range w < w, the system is convectively unstable. I, is given
by (4.32), and comparing this with (i) above we see that

I, =J(X,)—JX,), for o<ua, (4.33)

and equation (4.11) is satisfied. With frequency in the range v, < v < w,, [, is again
given by (4.32). On comparison with (i) above we again find that equation (4.11) is
satisfied for oy < w <w,

With frequency in the range w, < o, we have the fact that k] = k&, and hence

Re {k} /P (k) — I} /P (k) =
Equation (4.32) is thereby reduced, and on comparison with (iii) above we again

check that equation (4.11) is satisfied in this high-frequency range.

4.5. Bvaluation and properties of Re 4,

Equations (4.31) and (4.32) give an explicit expression for the real part of the drive
point admittance,

Re A4 —lee{ ki + L S }

v Pi(ky)  Pi(ky) Pi(ks) P(ky))

Using equations (2.15), (2.16) and (2.25) we can substitute into (4.34) to determine
Re 4, approximately when w = QU? Q = O(1). We find

Red, ~ —(w/20?){1 +%(QU)i 410003}, (4.35)

Using the results of §3 we find also that for v, < o, O(U%) < w < O(1), Red,=1/50w
(by equation (3.11)), and for w, < w, O(1) < w, Red4, = = 1/40* ( (by equatlon (3.12)).
These approximations to Re AO are plotted against the exact numerically calculated
values of ReA4, in figures 4 and 5 for the appropriate frequency ranges and for
U =0.05.

To determine Re 4, around w = w, we concentrate on

U
Pi(ky)  PL(ks)

(4.34)

Referring to Brazier-Smith & Scott (1984, equation (3.3)), we write the two complex
conjugate poles ki, ky (for w > w) as

lc; 2 X ky i@ —o,), (4.36)

where A = (2(0D/dw)/ (02D /0k?))}. We determine P, "(k{ 5), using a Taylor expansion
about k,, as
P (ki 5) = A(k,, 0)+iB(k,, »),
where A(key, w) = —(A%/2!) (0 —w,) P{V (k) 4 (A*/4 ) (w0 —w,)*PY (k)
Phil. Trans. R. Soc. Lond. A (1991)
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‘Iﬂé 3
£

e b et

—40L

Figure 4. Plot of Re 4,, and comparison with the low-frequency approximation (4.35), (———) for
U = 0.05 and 0.002 < w < 0.0025.

and B(ky, 0) = Mo —w, )P (k) — (A%/31) (@ — 0, iPE) (k).

Upon evaluation we find, as expected, that Re4 = 0 for all > w,, and

k ks
Re 4 =Re{ —2 3_}=01 as ©—>w,+0.
U VAT T () A ;

With o < w,, (w—wp)% = e"i/zlw—wpﬁ. Substitution into the expressions for kf ,
yields )
ki 5=k, FAo—wl.
We determine P (k{ 5) as

7 ~ T Lyn _/\'(1)—(1) I%P:—,(k )
Pk 5) = FAlw—o, P +<kv)[1+ 21 Pk,

and 4 as A~ =2k, /Aw—w [fP(k,), (4.37)

which clearly is singular as @ —w,—0.

Equation (4.34) can of course be evaluated numerically. Figure 4 is a plot of
Re 4, for U = 0.05, and frequency in the range 0.002 < w < 0.0025. We see that Re 4,
is negative for w < w, = 0.0023649 and positive for all @ > w,. As predicted by the
analysis Re 4, tends to negative infinity as w >w,,» < w,, and is well behaved for
w > w,. Re 4, passes smoothly through the double root at v = wy = 0.0022589. The
low-frequency approximation (4.35) to Re 4, is also plotted on figure 4, indicated by
the dashed line.

In figure 5 we plot the exact Red, of (4.34) against the high-frequency
approximation of (3.12) and the moderate frequency approximation of (3.11), with
U = 0.05. Plot (a) demonstrates that there is a frequency band well within the limits
O(U?%) < ® < O(1) in which the Red, of (4.34) and that of (3.11) agree. Plot (b)
demonstrates close agreement between Re 4, and the real part of (3.12) for w > 10.

Phil. Trans. R. Soc. Lond. A (1991) 22-2
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6; (a) ()
08

[

Re A,

0 004 008 ,, 0 10 w 20

Figure 5. Plot of Re 4, against high frequency (....) approximation (3.12) and moderate frequency
(——-) approximation (3.11), with U = 0.05 and (a) 0.002 < w < 0.1, (b) 0.002 < w < 20.

The significant conclusion is that the negative values of Re 4, persist throughout
the range 0 < w < w,, thus including the range v, < w < w, in which there are no
convective instabilities as well as the range 0 < w < w, of convective instability. Only
in the range w > w, is the energy input from the driver into the fluid—plate system.
Note also that quite different results would be produced by the use of the
conventional integration contour (indented above singularities on the negative real
axis and below any on the positive) rather than the deformed causal contour which
is necessary in general; even in the stable range w; < w < w,. This range, v, < w <
w, may well be called one of anomalous neutral stability, a title further justified by
the results to be given in §5.

5. Negative energy wave aspects
5.1. Introduction to negative energy

Although many of the results given earlier have been exact, they are perhaps most
easily understood for frequencies in the convectively unstable régime w < wy(U). The
frequency range wy(U) < @ < w,(U) is one in which all the wavenumbers ki, k7, ks
are real, but in which there are highly unusual features which warrant the name
‘anomalous neutral propagation’ range for such frequencies. Some clarification of
the situation in this range can be obtained from the ideas of the theory of positive
and negative energy waves, to which we now turn.

A problem that involves a flexible solid coupled to a flow can be described as a
‘flutter problem’ or as a ‘compliant surface problem’, and instabilities are always to
be expected. Benjamin (1960) determined that three distinct types of instability were
possible and they were later classified by Landahl (1962) and Benjamin (1963) as
‘class A’, ‘class B’ and ‘class C’, or ‘Kelvin—Helmholtz’, instabilities.

Class A and class B instabilities are essentially degenerate stable waves. They
consist of energy conserving oscillations which become unstable when subjected to an
irreversible process. To classify the instabilities Landahl (1962) and Benjamin (1963)
looked at the ‘activation energy’ (Benjamin’s terminology) of the waves. The
activation energy (E) is the net energy required from an external agency to create a
given steady state wave from rest in a non-conservative system. Benjamin and
Landahl recognized that the generation of a class A oscillation leads to an overall
decrease in the energy of the system. This type of wave has negative activation
energy and is henceforth known as a NEw (£ < 0). NEws are destabilized by damping,
which leads to their growth, because the energy level of the wave decreases below the
activation level and the value of |E£] is increased (where £ is the total energy of the
wave). Since |£] is proportional to (amplitude)?, this is the mechanism by which loss
of energy by a NEW results in an increase in its wave amplitude.
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The generation of a class B oscillation leads to an overall increase in the energy of
the system, and class B oscillations are known as PEws (£ > 0). Damping of a PEW
leads to energy decrease below the activation level (now positive), and thus to decay.

Class C instabilities have no stable counterpart. They exist when there is a
unidirectional transfer of energy from the flow into the solid ; there is therefore no net
change in the energy level of the system and the activation energy level is zero.

Benjamin calculated the activation energy £, in the non-conservative system, by
subtracting the energy W lost by the fluid, per unit area of the boundary, from the
sum of the mean kinetic and potential energies per unit area of the interface, 7' and
V respectively. Cairns (1979) derived an expression for the total energy of the wave
as

E = }wdD,/0w)|4]?, 6.1

where w and 4 are the frequency and amplitude of the surface wave deflexion, and
D,(k,w) is a dispersion function defined in a certain precise way by Cairns; when
applied to the present problem, Cairns’ method leads to the identification of D, (k, w)
given in (5.5) below. Expression (5.1) is derived by calculating the work done during
an idealized process in which a wave is generated by an external driving force applied
to the surface of the fluid. Use of equation (5.1) makes for easy identification of PEW
(# > 0) and NEW (K < 0).

In §4, equation (4.23), we calculated the total mean energy density 7'(k,) of a
stable wave of wavenumber k,. We now find that 7' is equivalent to Benjamin’s #,
except that where he subtracts the energy lost by the fluid we add on the energy
gained by it. We also find that our 7' is equal to the £ of Cairns, provided we take
D, = —D where D(k, w) is the dispersion function of §2.

5.2. Neutral waves on the fluid-loaded plate with mean flow

The problem we now solve is as stated in §2.1 with one change ; the fixed-frequency
time-harmonic forcing F(t) = Fyexp (—iw,t) is absent, and we look at the free
propagation of a wave of fixed real wavenumber k, concentrating on the case when
the frequency w is also real. Thus we consider a surface displacement

n(x,t) = A exp (ikx—iwt) (5.2)

with k real. In §2 we found expressions for the roots of P, (k) = 0. In particular we
determined for which frequencies the roots were real and would generate waves of the
type which we now take as the surface displacement. Equation (5.2) corresponds
to the response downstream of the drive point for w, < w < w, when there exist
two neutrally stable right-running travelling waves, with wavenumbers given
approximately by (2.15),

kxw/U+ (/U U — 1),

which we consider independently. A right-running stable travelling wave is also seen
downstream of the drive point if w > w,; and upstream of the drive point both a left-
running (upstream) and a right-running (downstream) stable travelling wave are
seen for all ® < w,, and just the first of these two for w > w,.

The results for the pressure and velocity potential are

P, ) = — A((@— Uk /y(k)) el e 70 v ot (5.3)
B 1) = iA((@— Uk) [y (k)) e ¢ oot (5.4)
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Figure 6. The dispersion curve for neutral waves in the system, with the plate at rest.

where again, for incompressible fluid, the function y(k) = |k| for real k. Equating the
pressure difference across the plate to the mass-acceleration product minus the
elastic restoring force, we determine the dispersion function in the Cairns (1979) sense
as

D,(k,w) = 0*—k*+ (0 —Uk)?*/y(k), (6.5)
Solving D, (k, w) = 0 for w yields two roots,

w = (k/(14+ 1)) [U=+ [k(k®+ k2 — U?)]t]. (5.6)
The dispersion curve is shown in figure 6. For real negative k the dispersion curve is
given by point reflexion in the origin, since evidently w(—k) = —w(k). There is a

branch point at (k,,®,), where k, is the (unique) positive root of
EB+k—U? =0, (5.7)
namely k, = —3—2cos (3¢ +2n), (5.8)

where ¢ = arccos (1—2U?%, 0< ¢ <im,

and the corresponding value of w is
w, = Uk,/(1+k,). (5.9)

For |k| < k,, equation (5.6) produces complex w; if Imw < 0 the wave decays, but
if Imw > 0, the wave grows exponentially with time. Thus, for any |k < k,, a
temporal instability is generated and this corresponds to the class C or Kelvin—
Helmholtz instability of Benjamin.

For |k| > ki, w is real and the system is stable. For k* < U* < k® + k? the dispersion
curve has two branches in the first quadrant. At k& = k, = US the lower branch crosses
the k-axis into the fourth quadrant.

We note that for small w (>0 say), there are evidently two real roots for k, and
these are close to the crossing points, k ~ + k| = + U 5. These are, of course, the wave-
numbers identified earlier as ki, one left-propagating (k; ~ —U?%), one right-
propagating (ki ~ + U?). However, our earlier analysis from the causality viewpoint
showed that these waves are both to be found upstream of any point of localized
excitation, a feature not evident from inspection of the dispersion pattern of figure
6 alone.

The group velocity of the waves is given by

dw 1 k[3k* + 5k + 2k + (3 + k) (k° + k> — U?)]
y =2 _ gkl (3+k) )
€k (1+k)2| : ’

5.10
2ke(k? + k> — UP) |2 (6.10)
Phil. Trans. R. Soc. Lond. A (1991)
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At the branch point the group velocity becomes infinite. The lower branch has
turning points when the group velocity is zero. At these points, w locally has
quadratic variation with k, and therefore the frequencies concerned are real branch
points for k as a function of w. They must therefore correspond to the two real
frequencies wy(U) and w,(U) identified earlier. Only one of these, w,, corresponds to
a ‘pinch’, and terminates the frequency range of anomalous neutral propagation ; the
other corresponds to a merging of amplifying and decaying instability waves,
terminating the convectively unstable frequency range.

Squaring and solving for U* we determine expressions for U?, at the turning points,
as

2k?

=il olrLan2L8 17 24 2173 4
ch 4+9k+6k2+k3{(1+ Lk + 16k + 2Lk + 2k4)

+ (1 — 8k — 422 — 68k® — 47k* — 12k5)3},
and for U € 1 we determine the turning points to lowest order as
kg~ U, ky~ (&)3US, (5.11)

Wlth kg, ke, correspondlng to wg, w, respectively. These correspond to w, ~ U?, w, ~
NU? as glven in (2.17) and (2. 21) respectively, and higher approxnnatmns can be
found corresponding to those in (2.18) and (2.22). For U = 0.05 we read off from
figure 6 values of wg, w, which are exactly those computed for this case by Brazier-
Smith & Scott (1984).

For the branch point (w,, k,) we find from (5.7) and (5.8) that

k, = U—1U+O(U®), (5.12)
w, = UX(1—3U+O(U?)),

which shows that w; <w, <w,. The second of (5.12) gives w, = 0.0023125 for
U = 0.05, and the exact value is 0.0023277.

We note that for k, < k < ks and k > k, the lower branch of figure 6 has negative
group velocity v,, and positive group velocity for k; < k < k,. On the upper branch
the group velocity is positive throughout. For the wave energy we use Cairns’
expression (5.1) and evaluate 0D,/0w on the dispersion curve to get

oD, /0w = +2[k(k® + k2 — U?), (5.13)

positive on the upper branch, negative on the lower. Therefore the upper branch has
w > 0,0D,/0w > 0,v, > 0 and is a PEW with energy flux

J =0, B, (5.14)

directed in the positive z-direction (as also is the phase velocity). We might expect
to see such a wave downstream of a point of local excitation. This is indeed the case,
and the wave concerned was indicated by wavenumber k} in §§2—4. However, such
a wave was then found downstream throughout w > w,, whereas we find it now only
for w > w,. The reason is that the lower branch of the dispersion curve also
corresponds to kj for k, < k < k, in which range we have w > 0,£ < 0,v, < 0. Thus
the kF wave is actually a NEW in this range with negative (leftward) group velocity,
but the energy flux is positive and the wave continues to appear downstream of a
point of local excitation.

As just observed, the lower branch has w > 0 and 0D,/0w < 0 throughout k, <
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Table 2. Summary of properties of neutrally stable waves corresponding to the two branches of the
dispersion curve for different wavenumber ranges

(In the last column U and D indicate that the wave is found upstream or downstream of a
point of excitation respectively.)

) oD, /0w E Vg J k location

upper branch

k> k, + + + + + k} D
lower branch

k, <k <k, + - - - + k3 D

ky<k<lk, + — - + - kt D

ky <k <k, + - - - + k} U

k., <k - - + - - ks U

k < k., and so represents a NEW. It has v, < Ofork, <k < kjand k, < k < k,,v, >0
for kg < k < k,. The range k, < k < kg corresponds to the wave with wavenumber
k3, as just discussed, while for w, < w < w, and k, < k < k, the lower branch wave-
number must be that denoted by ki earlier. This (k{) wave is a NEW with v, > 0 and
energy flux J < 0, but despite this last feature it appears downstream of a drive
point, where its negative energy flux contributes to the energy absorption there
(Red, <0 for all w < w,).

The final right-hand part of the dispersion curve has been mentioned before; it
corresponds to wavenumber k3 for 0 < w < w,, a NEW with v, < 0,J > 0. It is found
upstream of a drive point, and its positive flux (inward, towards the drive point) also
contributes to the energy absorption at the drive point.

For k > k, the lower branch has w < 0 and 0D, /0w < 0, so that £ > 0 and the wave
is a PEW. The change in sign of ¥ is associated with that of w alone, and although v,
remains negative the phase velocity changes sign at k = k,. This wave was given
wavenumber (— k3) in earlier sections because w was then always taken positive. The
wave appears upstream of the drive point, has v, and J both negative, and carries
energy away from the drive point. It has no unusual features, and for sufficiently
high k (or w) it takes on the character of the familiar leftward propagating bending
wave on the plate. The rightward propagating bending wave corresponds to the high-
frequency limit along the upper branch. These results are summarized on table 2.

It will be noted that this re-interpretation of the dispersion function from the
viewpoint of figure 6 is entirely consistent with earlier results. Thus, for example, k7
and k3 coincide at w,, while &k and &} coincide at w,. However, examination of the
situation for complex w and k is needed to show, as in §3, that k{ and k3 pinch at v,
whereas kT and k] coincide but do not pinch at w,. Clearly there are highly anomalous
features of the range w, < w < w,, although these have been to some extent clarified
by recognition of the importance of the sign of K as well as that of v,. However,
Brazier-Smith & Scott’s discussion of the wave (k7) in this frequency range is in error.
That wave does not have J < 0, and in fact has v, and £ both negative for w, <
w < w, and both positive for w > w,, and thus downstream-directed energy flux in
both cases.

This brings us to the most strikingly anomalous feature ; in the range v, < 0 < w,,
the kj wave has v, < 0 but it is found downstream of the drive point. This is because
wavenumber kj(w) starts at infinity in Imk > 0 for Imw = + o0, and so the k-
contour must always pass beneath k = kj. However the global behaviour is not
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Figure 7. Plot of kf, k} and k] in the anomalous frequency range, as Im w increases from zero
to large positive values.

mimicked by the local behaviour for small positive Imw. That local behaviour
consists of displacement of kj(w) first into Imk < 0 and only for larger values of
Imw > 0 of ultimate recession to Im k& = + oo (see figure 7 for a particular case). Use of
the local behaviour to remove real axis pole singularities, and thereby to pick up
wave motions in regions of space only where the waves have group velocity directed
away from a region of excitation, is the basis of the method introduced by Lighthill
(1960, 1978) for correct selection of ‘radiating’ waves. However, as discussed in §1,
Lighthill made the case for his criterion very clear; the excitation must be the source
of all the wave energy, and in our problem it is not. Indeed the role of the excitation
is one of wavenumber and energy conversion, the inhomogeneity on the plate acting
as a mechanism for transferring energy from the large reservoir in the free stream to
wave energy.

There is therefore no conflict with the Lighthill criterion, and no need to argue that
the anomalous neutral waves would never be seen in practice because they would be
exponentially small compared with the convectively unstable waves with frequencies
in 0 <w < wg that would necessarily be generated in any start-up process. The
propagating waves, whether amplifying or not, correspond to residue contributions
which quickly dominate the branch line integral, and then because the amplifying
waves have only a small growth rate (see (2.23)) it is quite possible that they will not
dominate the anomalous neutral waves until « has attained very large values indeed.

5.3. Comments on the energy fluxes

Using table 1 and the approximate expressions for the roots, it is possible to
calculate the order of magnitude and the direction of the fluxes. The results are
summarized on table 3. We begin with the downstream results. We have
demonstrated that for any frequency less than w, the total flux J across any station
due directly to the exponentially growing or decaying wave is zero. However, the
individual fluxes J(k7), J,¢(k7), etc., are not zero. Ignoring exponentially large and
small terms, it is clear that the significant fluxes are the fluid and plate—fluid fluxes.
These fluxes have opposite directions, with the energy associated with the fluid—plate
flux always travelling upstream towards the drive point. The energy in the fluid and
in the plate is always right running.
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Table 3. Summary of approximate results for the energy fluxes upstream and downstream
of the excitation

(Each flux is to be multiplied by |Fy|?, and only the leading order term is quoted in each entry.)

downstream
energy flux term: kt : ky cross term
(i) 0 <o,
J o/ U)exp(—20/Ufe) o/ U)exp 2w/ U Yo/ T?)
Iy —&(w/U?)exp ( 2(w/U ) —k(w/U?) exp 2(w/U) i) —Hw/U?
J, }wa/U")exp 2(w/ U)) 1w?/U®) exp 2w/ U)2x) —Hw?/U®)
J —5e/U?)
(i) o, K w <o,
J; 11—6((1)/U2)l Tlg(w/U2) Yo/ U?) cos ( 2umc/U2
s —3U/w) YU/ w)? 3w/ U?) cos ( wzac/U2
Jy ilw/U?) Hw/U? —Lw/U?) cos (2wix/ Uk
J —4U/w): YU/ w): 0
(i) 0, < w )
J; — to(L/ @) —
pr - %(U/wf) -
Iy _~ 2_15(1/(’)?) —
J - a5(1/w?)
upstream
energy flux term: k3 ks cross term
(i) o <o,
J %(w/U? —3(w/U? =(w/U? ( w/U ) cos ( Uax)
s —&(w/U?) H(w/U? — w/U2 w/U ) cos ( 2U39c)
J, Ho/U?) —Yw/U?) =(w/U?) ( w/U3 cos (2Uz)
J 15(w/U?) —13(0/U?)
(i) v, <w .
d — —1og(1/w?) —
pr - LO(U/wg)1 —
Iy - ‘%(1/‘”?) -
J — —&(1/h) —

Transport of energy in this frequency range is, however, entirely due to the
interaction between the two waves. The two large fluxes are J(k{, k}) and J (k] , k3)
with J (k] k3) small. It is significant that both J (k] , k3) and J_; (k7, k}) are negative,
indicating that the energy is travelling upstream towards the driver. The total flux
is negative also.

The overall position, then, is that, for w < w, there exist two unstable downstream
travelling waves, one exponentially large and one exponentially small. Both waves
have zero total flux and any transport of energy is due solely to their interaction. The
interaction leads to an upstream ‘surge’ of energy, which clearly will not be masked
by the instabilities as suggested by Brazier-Smith & Scott. The total interaction flux
is small and we have in fact already seen its effect. Figure 4 indicates that for v <
ws, Re 4, is negative, and that the driver is receiving and absorbing energy. This
result must be due in part to the negative value of J(k, k7).

For w, <w < w, the two downstream waves are neutral travelling waves. The
fluxes assomated with the wave e'*i% are all positive, and the energy and wave are
right travelling. The fluid—plate flux is the largest in magnitude for both waves and
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J,

¢(k7) is negative. This term dominates the others and J(k) is negative also. Hence
the stable right-running wave has left-travelling energy. The group velocity of both
waves is positive and using equation (5.14) we classify e!*1% as a NEw and e'¥:7 as a
PEW.

For w, < w, the only wave present is e'*:*. All fluxes are positive, and the large
fluxes are J, and J; with the coupled fluid-plate flux no longer significant.

Upstream we find that, for < w,, all fluxes are of the same order and that J, and
J; always have the same direction, which is that of the wave. The flux J; takes the
opposite direction to the wave. The wavenumber k} generates a stable right-running
wave with positive total flux. The energy in this wave is carried towards the drive
point. Wavenumber k; generates a stable left-running wave, with negative total
flux, indicating left travelling energy. Both waves have negative group velocity and
thus k3 generates a NEW and k; generates a PEW.
For w, < o there exists a stable left-running wave e

is left travelling.

A
ik,

ikgx

and the total flux of energy

6. Conclusions

In this paper we have examined the fundamental problem of structural acoustics
in the presence of mean flow: the problem of determining the structure and fluid
response when the structure is excited by localized forcing. We have concentrated on
the low-frequency low-velocity régime in which mean flow effects are most
pronounced, and for this régime have obtained asymptotic expressions for the
significant characteristics of the waves generated by concentrated forcing of a thin
elastic plate. The absolute instability boundary U = U, has been obtained exactly,
and for all U < U, the response of the system has been obtained asymptotically in the
convectively unstable frequency range v < wy(U), the anomalous neutral propagation
range wy(U) < v < w,(U), and the conventional neutral range > w,(U). An exact
energy equation for the system has been derived, and the way in which energy is
transported through the system has been shown for convectively unstable and
neutral waves.

The significant features of the study seem to us to be the following.

1. The characteristics of the waves generated upstream and downstream of the
excitation are far from obvious, and can be settled by nothing less than the full
implementation of the causality requirement for the correct interpretation of the
Fourier integral for the response. This holds not only for 0 < w < wy(U) where an
incorrect interpretation of that integral would give, for example, a field in x < 0 and
decaying exponentially there rather than an instability in x>0 amplifying
exponentially there. In the range wy(U) < v < w,(U) we find a neutral wave mode
which has group velocity directed towards the excitation. Such a situation would be
forbidden by a group velocity radiation condition, but is permitted here, we argue,
because the exciting force is not the sole source of wave energy (which would then
radiate away at the group velocity) but also has a role as a scatterer. The imposition
of a time-harmonic local constraint can convert steady mean flow energy into wave
energy at the prescribed frequency, and the group velocity and the energy flux of the
wave energy created in this way must be determined from the causality prescription,
and not from use of a radiation condition.

2. Related to the above is the fact that Red, < 0 throughout 0 < w < wg and
ws <w <w,; and in fact Red,>—00 as w approaches w, from below. Thus to
maintain the postulated fixed force excitation the external agency must be prepared
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Table 4. Summary of results for the phase velocities, group velocities, fluxes upstream
and downstream of the excitation, and for the energy input at the drive point

one neutral NEW (k)
— phase velocity
< group velocity

—flux

(@) w <o, U<U,

one exponentially growing wave (k%)

— phase velocity
— group velocity
flux = 0?

one neutral PEW (k3)
< phase velocity
< group velocity
<~ flux

v

energy out
Red, <0

one exponentially decaying wave (k%)

— phase velocity
— group velocity
flux = 0*

one neutral NEW (k3)
— phase velocity
< group velocity
- flux

(b) w,<w<w,U<U,

one neutral NEw (k3)
— phase velocity
< group velocity
- flux

one neutral PEW (k)
< phase velocity
< group velocity

< flux

\

energy out
Red, <0

one neutral NEw (k7)
— phase velocity
— group velocity
< flux

one neutral NEW (k)
> phase velocity
< group velocity
- flux

(¢) w,<w<w,U<U,

one neutral PEW (k3)
- phase velocity
—group velocity
— flux

one neutral PEW (k3)
< phase velocity
< group velocity
<« flux

v

energy out
Red, <0

one neutral NEW (k7)
— phase velocity
- group velocity
<« flux

one neutral PEW (k)
< phase velocity
< group velocity

(@) w,<w,U<U,

one neutral PEW (k3)
> phase velocity
- group velocity

< flux - flux
)
evanescent wave (kj) energy in evanescent wave (k7)
of no far-field significance Red, >0 of no far-field significance

< phase velocity — phase velocity

* There is a non-zero flux in the positive a-direction from the interaction between the two
downstream waves.

to absorb wave energy at frequency w: and indeed at a very large rate for w just less
than w,. Only for w > w,, is the power flow from the drive into the system, and then
the effects of mean flow are confined to minor perturbations of the much-studied
problems of the fluid loading of static elastic structures. The directions of the phase
and group velocities, of the energy flux and of the energy input are all summarized
diagrammatically in table 4.

These features illustrate the profound effects that can follow the introduction of
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mean flow, and we stress again that they arise not only where convective instabilities
are found, but in the anomalous neutral frequency range also; indeed the largest
effects occur at the boundary o = w, between the anomalous neutral range and the
conventional neutral range. The whole pattern of energy flow into the wave fields in
the fluid and the structure has been dramatically changed by the possibility of
substantial conversion of mean flow energy to wave energy.

There is also a serious technical implication here. The whole character of the
solution to a fixed-frequency excitation problem can be resolved only by carrying
through the causality calculations, which are global and refer to frequencies of all
magnitude. Such calculations, necessarily a mixture of numerical and asymptotics
even in the simplest possible case, as here, pose severe technical problems for which
there appear from the present work to be no short cuts.

This work has been carried out under support from the U.S. Office of Naval Research, code 1132SM
(Dr Phillip Abraham).

Appendix. Exact evaluation of ¥(0)
Evaluating (3.3) at the point of excitation (x = 0) we write

k k
Y0, w =J ———dk—l—f k. Al
{ ) c_(w) P (k,w) () P (k, w) (

We may close the contour in the upper half-plane (as in figure 3), or in the lower
(using an appropriate similar path). It is evident that with x =0, however, the
branch line integrals give a contribution which is significant and must be evaluated.

Using Cauchy’s Theorem we evaluate ¥(0), when closure takes place in the upper
and lower half-planes respectively, as

Y0, 0) = zmz J fk) (A2)

K
‘”(0""):‘2“{1’4@, o) kg,w} f J) (4.3)

Here | f and () represent integration around the branch cuts in the upper and lower
half-planes respectively. Considering the branch line integrals, we now make a
change of variables; let ¥ = ivin (A 2) and £ = —iv in (A 3). The paths of integration
have now been moved to the real line, and

© pdo “ vdw
fuf(k)dszo P+(iv)—Jo P_(iv)’ (349
©  wdv ©  pde
fmﬂ’“)dszo el ot (49)

It is easily established from the definitions of P, (equation (2.13)), that P, (&) =
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P, (a), where overbar denotes complex conjugate. The sum of (A 4) and (A 5) can
then be written as

“ v . — @y . -
J; |P+(l?)) I2 [P+(l?)) +P+(I'U)] dv_fo W[P_(l'v) +P_,(1?))] dv = 2B0, (A 6)

where B, is real.

Returning to equations (A 2) and (A 3), the function ¥(0, w) is determined as
kf kf ki ks

TO’Q):T“{ /1 + /2 - /3 - /3_

O = B T L) ) L)

} +B,. (A7)

References
Benjamin, T. B. 1960 Effects of a flexible boundary on hydrodynamic stability. J. Fluid Mech. 9,
513-532.

Benjamin, T. B. 1963 The threefold classification of unstable disturbances in flexible surfaces
bounding inviscid flows. J. Fluid Mech. 16, 436-450.

Brazier-Smith, P. R. & Scott, J. F. 1984 Stability of fluid flow in the presence of a compliant
surface. Wave Motion 6, 547-560.

Cairns, R. A. 1979 The role of negative energy waves in some instabilities of parallel flows. J. Fluid
Mech. 92, 1-14.

Carpenter, P. W. & Garrad, A. D. 1986 The hydrodynamic stability of flow over Kramer-type
compliant surfaces. Part 2. Flow-induced surface instabilities. J. Fluid Mech. 170, 199-232.

Cremer, L., Heckl, M. & Ungar, E. E. 1973 Structure-borne sound. Berlin: Springer-Verlag.

Crighton, D. G. 1989 The 1988 Rayleigh medal lecture: fluid-loading — the interaction between
sound and vibration. J. Sound Vib. 133, 1-27.

Drazin, P. G. & Reid, W. H. 1981 Hydrodynamic stability. Cambridge University Press.
Fahy, F.J. 1985 Sound and structural vibration. London: Academic Press.

Gad-el-Hak, M. 1986 Boundary layer interaction with compliant coatings: an overview. Appl.
Mech. Rev. 39, 511-523.

Huerre, P. & Monkewitz, P. A. 1985 Absolute and convective instabilities in free shear layers.
J. Fluid Mech. 159, 151-168.

Huerre, P. & Monkewitz, P. A. 1990 Local and global instabilities in spatially developing flows.
Ann. Rev. Fluid Mech. 22, 473-5317.

Junger, M. C. & Feit, D. 1986 Sound, structures and their interaction, 2nd edn. Cambridge,
Massachusetts: M.I.T. Press.

Kop’ev, V. F. & Leont’ev, E. A. 1985 Energy aspect of the acoustic instability of certain steady-
state vortices. Akust. Zh. 31, 348-352.

Landahl, M. T. 1962 On the stability of a laminar incompressible boundary layer over a flexible
surface. J. Fluid Mech. 13, 609-632.

Lighthill, M. J. 1960 Studies in magneto-hydrodynamic waves and other anisotropic wave
motions. Phil. Trans. R. Soc. Lond. A 252, 397-430.

Lighthill, J. 1978 Wawes in fluids. Cambridge University Press.

Ostrovski, L. A., Rybak, S. A. & Tsimring, L. Sh. 1986 Negative energy waves in hydrodynamics.
Usp. Fiz. Nauk 150, 417-437.

Riley, J. J., Gad-el-Hak, M. & Metcalfe, R. W. 1988 Compliant coatings. A. Rev. Fluid Mech. 20,
393-420.

Yeo, K. S. & Dowling, A. P. 1987 The stability of inviscid flows over passive compliant walls.
J. Fluid Mech. 183, 265-292.

Received 14 November 1990 ; accepted 17 January 1991

Phil. Trans. R. Soc. Lond. A (1991)


http://rsta.royalsocietypublishing.org/

